

Website: www.vpmclasses.com

Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

SECTION-A

MULTIPLE CHOICE QUESTIONS (MCQs) (Q. 1-30)

1. A particle is moving in space with 0 as the origin. Some possible expression for it's position velocity is given in polar coordinates (r, θ, ϕ, are given below. Which of the following options is correct ?
(A) $\vec{r}=r \hat{e}_{r}+r \hat{e}_{\theta}+\hat{e}_{\phi}, \quad \vec{v}=\dot{r} \hat{e}_{r}+\dot{r} \dot{\theta} \hat{e}_{\theta}+r \sin \theta \dot{\phi} \hat{e}_{\phi}$
(B) $\vec{r}=r \hat{e}_{r} \quad \vec{v}=\dot{r} \hat{e}_{r}+r \dot{\theta} \hat{e}_{\theta}+r \sin \theta \dot{\phi} \hat{e}_{\phi}$
(C) $\vec{r}=r \hat{e}_{r}+r \theta \hat{e}_{\phi} \quad \vec{v}=\dot{r} \hat{e}_{r}+r^{2} \dot{\theta}+r^{2} \sin \theta \dot{\phi} \hat{e}_{\phi}$
(D) $\vec{r}=r \hat{e}_{r}+r \theta \hat{e}_{\theta} \vec{v}=\dot{r} \hat{e}_{r}+r \dot{\theta} \hat{e}_{\theta}$
2. A satellite moves around a planet in a circular orbit ata distance R from its centre . The time period of revolution of the satellite is T. If the time period of satellite is become $8 T$ then what will be the new radius oforbit .
(A) $\frac{R}{2}$
(B) 4 R
(C) $\frac{R}{4}$
(D) $2 R$
3. A solid sphere of mass $2 m$ and radius $a / 2$ is rolling with a linear v speed on a flat surface without slipping. The magnitude of the angular momentum of the sphere w.r.t a point along the path of the sphere on the surface is,
(A) $\frac{2}{5} \mathrm{mav}$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) $\frac{m}{2} a v$
(C) mav
(D) $2 m a v$
4. An object of mass m moving with a velocity v is approaching a second object of the same mass but at rest. The total kinetic energy of the two objects as yiewed from the centre of mass is,
(A) $m v^{2}$
(B) $\frac{1}{2} m v^{2}$
(C) $\frac{1}{4} m v^{2}$
(D) $\frac{1}{8} m v^{2}$
5. Moment of inertia of a uniform solid cylinder about its axis having length l and radius R is
(A)

(B)
(C) ${ }^{\frac{1}{2}} \mathrm{M}\left(l^{2}+\mathrm{R}^{2}\right)$
(D) $\frac{1}{4} \mathrm{M}\left(l^{2}+2 R^{2}\right)$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
6. A thin massless rod of length I has equal point masses m attached at its length (see figure). The rod is rotating about an axis passing through its centre and making angle θ with it. The magnitude of the rate of change of its angular momentum

(A) $2 m l^{2} \omega^{2} \sin \theta \cos \theta$
(B) $m l^{2} \omega \sin 2 \theta$
(C) $\frac{m l^{2}}{4} \omega^{2} \sin 2 \theta$
(D) $\frac{m l^{2}}{2} \omega \sin 2 \theta$
7. The weight of a body at a height is equal to the radius of the earth. W is its weight at a height which is equal to three times the radius of the earth which will be
(A)
$\frac{W}{2}$
w
(B)
(C) $\frac{4}{3} w$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(D) $\frac{W}{4}$
8. Disc of mass m_{2} is placed on a table. A stiff spring is attached to it and is vertical. The other end of the spring is attached to a disc of mass m_{1}.(Fig.). What minimum force should be applied to the upper disc to press the spring such that the lower disc is lifted off the table when the external force is suddenly removed?

(C) $F_{\text {min }}=\left(m_{1}+m_{2}\right) g$

(D)

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
9. A projectile is fixed from the origin O at an angle of 30° from the horizontal. At the highest point P of its trajectory the radial and transverse components of its acceleration in terms of the gravitational acceleration g are

(A) $a_{r}=-\frac{g}{\sqrt{13}}, \quad a_{\phi}=-\frac{g}{\sqrt{12}}$
(B) $\mathrm{a}_{\mathrm{r}}=-\frac{\mathrm{g}}{\sqrt{12}}, a_{\phi}=g \sqrt{\frac{12}{13}}$
(C) $a_{r}=-\frac{g}{\sqrt{12}} a_{\phi}=-g \sqrt{\frac{13}{12}}$
(D) $a_{r}=-\frac{g}{\sqrt{13}}, a_{\phi}=-g \sqrt{\frac{12}{13}}$
10. A particle of mass 3 kg moves under a force of $[4 \vec{i}+8 \vec{j}+10 \vec{k}]$ newton. If the particle starts from rest and was at the origin initially, what are its new co-ordinates after 3 s ?
(A)
(B)
$(6,15,13)$
$(6,12,6)$
(D) $(6,15,12)$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
11. In the formula $x=3 y z^{2} x$ and z have dimensions of capacitance and magnetic induction what are the dimensions of y -
(A) $M^{-3} L^{-2} T^{4} A^{2}$
(B) $M^{-3} L^{-2} T^{8} A^{4}$
(C) $M^{-1} L^{-2} T^{8} A^{2}$
(D) $M^{-1} L^{-2} T^{4} A^{6}$
12. A body of mass m_{1} collides elastically and head on with another of mass m_{2} at rest . If initial velocity of m_{1} is u, and final velocity after the collision is $U_{1} / 1.5$ then what is the ratio of $\frac{\frac{m_{1}}{m_{2}}}{}$?
(A) $1: 25$
(B) $1: 5$
(C) $5: 1$
(D) $25: 1$
13. The mass M shown in figure oscillates in simple harmonic motion with amplitude A. The amplitude of the point P is

(B)

(A)

(C) $\overline{k_{1}+k_{2}}$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(D) $\frac{\mathrm{k}_{2} \mathrm{~A}}{\mathrm{k}_{1}+\mathrm{k}_{2}}$
14. Four charges are placed at the corners of a square of side ℓ as shown. The charge at P enjoys equilibrium. Then q / Q is equal to

(A) $2 \sqrt{2}$
(B) 2
(C) $\sqrt{2}$
(D) $2 \sqrt{3}$
15. In an interference arrangement similar to Young's double-slit experiment, the slits S_{1} and S_{2} are illuminated with coherent microwave sources, each of frequency $10^{6} \mathrm{~Hz}$. The sources are synchronized to have zero phase difference. The slits are separated by a distance $\mathrm{d}=150.0 \mathrm{~m}$. The intensity $\mathrm{I}(\theta)$ is measured as a function of θ, where θ is defined as shown. If I_{0} is the maximum intensity, then $\mathrm{I}(\theta)$ for 0 $\leq \theta \leq 90^{\circ}$ is given by

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

S_{2}
(A) $I(\theta)=I_{0} / 2$ for $\theta=30^{\circ}$
(B) $\mathrm{I}(\theta)=\mathrm{I}_{0} / 4$ for $\theta=90^{\circ}$
(C) $I(\theta)=I_{0} / 3$ for $\theta=0^{\circ}$
(D) I (θ) is constant for all values of (θ)
16. Two point charges $+q$ and $-q$ are held fixed at $(-d, 0)$ and $\ell, 0)$ respectively of a $x-y$ coordinate system. Then
(A) The electric field E at all point on the x-axis has the same direction
(B) Work has to be done in bringing a test charge from ∞ to the origin.
(C) Electric field at all point on y-axis is along x-axis
(D) The dipole moment is 2qd along the x-axis.
17. A particle with specific charge $\overline{\mathrm{m}}$ moves rectilinearly due to an electric field $\vec{E}=E_{0}-a x$ where a is positive constant, x is the distance from the point where the particle was initially at rest then the distance covered by the particle till the moment it came to a stand still.
(A) $\frac{E_{0}}{a}$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) $\frac{\mathrm{E}_{0}}{2 \mathrm{a}}$
(C) $E_{0} \frac{a}{2}$
(D) $\frac{2 \mathrm{E}_{0}}{\mathrm{a}}$
18. $p-v$ plots for two gases during adiabatic processes are shown in the figure. Plots 1 and 2 should correspond respectively to.

(A) He and O_{2}
(B) O_{2} and He
(C) He and Ar
(D) O_{2} and N_{2}
19. In the vicinity of the triple point the saturated vapour pressure of carbon dioxide depends on temperature T as $\log P=a-\frac{b}{T}$, where a and b are constants. If p is expressed in atmospheres, then for the sublimation process $a=9.05$ and $b=1.80$ kK , and for vaporization process $\mathrm{a}=6.78$ and $\mathrm{b}=1.31 \mathrm{kK}$. then the temperature of triplet point.
(A) 216 K
(B) 275 K
(C) 196.46 K
(D) 242.0K

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
20. What is the value of line integral of $\vec{A} \int_{C} A \cdot d r$ over the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ where $\vec{A}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k}$
(A) 2π
(B) $\frac{1}{2} \pi$
(C) 0
(D) π
21. A particle of rest mass m_{0} moving with 0.6 speed makes a completely inelastic collision with a particle of rest mass $2 m_{0}$ that is initially at rest, what is the rest mass of the resulting single body.
(A) $3 \mathrm{~m}_{0}$
(B) $4.5 \mathrm{~m}_{0}$
(C) $3.4 \mathrm{~m}_{0}$
(D) $3.6 \mathrm{~m}_{0}$
22. A particle of mass mengy E is moving in one dimensional potential box of width a then
(A) The eigen function are orthonormalised.
(B) The expectation value of position is $\mathrm{a} / 2$.
(C) $\ln n=3$ level the degeneracy is 9
(D) The energy difference between consecutive energy levels are same.
23. Which of the structure having largest density
(A) Simple cubic structure
(B) Face-centered cubic structure
(C) Body-centered structure

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(D) Diamond
24. Which of the following statement is correct
(A) Paramagnetic substance have large value of susceptibility of magnetic permeability.
(B) Ferromagnetic substance large susceptibility but less negative magnetic permeability
(C) Diamagnetic substance have temperature independent susceptibility.
(D) Susceptibility of diamagnetic and paramagnetic substance is depend on temperature.
25. Body A and body B are made up an isotropic material. Body B has a cavity inside it

(B)
(A) Expansion in volume of body A is more than that of body B.
(B) Expansion in volume of body B is more than that of A.
(C) Expansion in volume of two bodies is same
(D) Data is incomplete

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
26. Two cars start of to race with velocity V_{1} and V_{2} travel in a straight line with uniform acceleration a_{1} and a_{2}. If the race end in a dead heat, then the length of the course is
(A) $\frac{2\left(V_{1} a_{1}-V_{2} a_{2}\right)}{\left(a_{1}-a_{2}\right)^{2}}$
(B) $\frac{2\left(V_{1}-V_{2}\right)\left(V_{1} a_{2}-V_{2} a_{1}\right)}{\left(a_{1}-a_{2}\right)^{2}}$
(C) $\frac{2\left(V_{1} a_{1}-V_{2} a_{2}\right)}{\left(a_{1}-a_{2}\right)^{2}}$
(D) $\frac{2\left(V_{1}-V_{2}\right)\left(V_{1} A_{1}+V_{2} a_{2}\right)}{\left(a_{1}+a_{2}\right)^{2}}$
27. A solid sphere of mass $2 m$ and radius $71 / 2$ is rolling with a linear v speed on a flat surface with out slipping. The magnitude of the angular momentum of the sphere w . r. to a point along a path of sphere on surface is
(A) $\frac{7}{2} m a v$
(B) 7 mav
(C) $\frac{7}{4} \mathrm{mav}$
(D) 14 may
28. The temperature of a diatomic gas is 300 K . Find the angular root mean square velocity of a rotating molecule of its m.o. 1 is $=2.1 \times 10^{-39} \mathrm{gm} . \mathrm{cm}^{2}$. (Take $\mathrm{K}=1 . \mathrm{z8} \times$ 10^{-28})
(A) $2.21 \times 10^{12} \mathrm{rad} / \mathrm{s}$
(B) $4.43 \times 10^{12} \mathrm{rad} / \mathrm{s}$
(C) $44.3 \times 10^{12} \mathrm{rad} / \mathrm{s}$
(D) $22.1 \times 10^{12} \mathrm{rad} / \mathrm{s}$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
29. Two large tanks a and b, open at the top, contain different liquids. A small hole is made in the side of each tank at the same depth h below the liquid surface, but the hole in a has twice the area of the hole in b. the ratio of the densities of the liquids in a and b so that the mass flux is the same for each hole should be
(A) 2
(B) 0.5
(C) 4
(D) 0.25
30. A mass m is suspended to a spring of length L and force constant k. The frequency of vibration is f_{1}. The spring is cut into two equal parts and each sorubg us cut half is loaded with same mass m. The new frequency f_{2} is given by
(A) $\mathrm{f}_{2}=\sqrt{2} \mathrm{f}_{1}$
(B) $f_{2}=\frac{f_{1}}{\sqrt{2}}$
(C) $f_{2}=f_{1} / 2$
(D) $\mathrm{f}_{2}=\frac{\sqrt{2}}{\mathrm{f}_{1}}$

SECTION-B

MULTIPLE SELECTQUESTIONS (MSQs) (Q. 31-40)

31. A particle of mass 2 m with a velocity $\overrightarrow{\mathrm{v}}=\mathrm{v}_{0}(2 \hat{\ell}+\hat{J})$, collides elastically with another particle of mass 3 m which is at rest initially. Which of the following statement/s is/are not correct-
(A) The velocity of centre of mass frame is $\frac{4 \mathrm{~V}_{0}}{\sqrt{5}}$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) Before collision velocity of particle of mass 2 m is $\frac{2 \mathrm{~V}_{0}}{\sqrt{5}}$
(C) Before collision velocity of particle of mass 2 m is $\frac{3 \mathrm{~V}_{0}}{\sqrt{5}}$
(D) Before collision velocity of particle of mass 3 m is $\frac{2 \mathrm{~V}_{0}}{\sqrt{5}}$
32. A straight tube of length L contains incompressible liquid of mass M and the closed tube is whirled in horizontal plane about one of the ends. If ω is the uniform angular velocity, the force not exerted by the liquid on the other is/are
(A) $\frac{\mathrm{ML} \omega^{2}}{4}$
(B) $2.5 \mathrm{ML} \omega^{2}$
(C)

(D) ML ω^{2}
33. A rod which is massless has four masses fixed on it, as shown in the figure. The moment of inertia about an axis passing through the centre of rod is/are

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(A)
$\ell^{2}\left(M+\frac{m}{4}\right)$
(B) $\frac{\ell^{2}}{2}\left(m+\frac{M}{4}\right)$
(C) $\frac{\ell^{2}}{2}\left(\frac{m}{4}+M\right)$
(D) $0.125 \ell^{2}(4 m+M)$
34. The block shown in the figure is acted upon by a spring having spring constant k and a weak friction force of constant magnitude f. The block is pulled a distance X_{0} from equilibrium and released. It then oscillates many times and finally comes to rest. Friction is causing the damping of oscillations.

Make the incorfect statement(s)
(A) The decrease in amplitude is same for each cycle of oscillation is equal to $\frac{2 f}{\mathrm{k}}$.

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) The decrease in amplitude is same for each cycle of oscillation and is equal to $\frac{4 f}{k}$.
(C) The decrease in amplitude is different for each cycle of oscillation.
(D) The decrease in amplitude is different for each cycle of oscillation and for every subsequent cycle it decreases by a factor of 2 .
35. A wire fixed at the upper end stretches by length ℓ by applying a force F. The work not done in stretching is/are
(A) $\frac{F}{2 \ell}$
(B) $0.5 \mathrm{~F}_{\ell}$
(C) $2 \mathrm{~F} \ell$
(D) $\frac{\mathrm{F} \ell}{2}$
36. The bob of a simple pendulum executes simple harmonic motion in water with a period t , while the period of oscillation of the bob is t_{0} in air. Neglecting frictional force of water and given that the density of the bob is $(4 / 3) \times 1000 \mathrm{~kg} / \mathrm{m}^{3}$, What relationship between t and t_{0} is/are true?
(A) $t_{0}=0.5 t$
(B) $t=t / 2$
(C) $t=2 t_{0}$
(D) $t=4 t_{0}$
37. A wire of cross-sectional area $4 \times 10^{-4} \mathrm{~m}^{2}$, modulus of elasticity $2 \times 10^{11} \mathrm{Nm}^{-2}$ and length 1 m is stretched between two vertical rigid poles. A mass of 1 kg is suspended at its middle. Calculate the angle it makes with horizontal.

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) $\frac{1}{2} \times 10^{-2}$ rad.
(B) $5 \times 10^{-3} \mathrm{rad}$.
(C) $\frac{1}{4} \times 10^{-2} \mathrm{rad}$.
(D) 2×10^{-2} rad.
38. Power transferred from the driving force to the oscillator is/are not maximum at the frequency of
(A) Quality resonance
(B) amplitude resonance
(C) Velocity resonance
(D) All of these
39. Two radio stations broadcast their programmes at the same amplitude A and at slightly different frequencies ω_{1} and ω_{2} respectively, where $\omega_{1}-\omega_{2}=10^{3} \mathrm{~Hz}$. A detector receives the signals from the two stations simultaneously. It can only detect signals of intensity $\geq 2 \mathrm{~A}^{2}$
(a) Find the time interval between successive maxima of the intensity of the signal received by the detector.
(b) Find the time for which the detector remains idle in each cycle of the intensity of the signal.
(A) $6.28 \times 10^{-3} \mathrm{~s} ; 1.57 \times 10^{-3} \mathrm{~s}$
(B) $6.28 \times 10^{-4} \mathrm{~s} ; 157 \times 10^{-3} \mathrm{~s}$
(C) $6.28 \times 10^{-2} \mathrm{~s} ; 157 \times 10^{-4} \mathrm{~s}$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(D) $628 \times 10^{-5} \mathrm{~s} ; 15.7 \times 10^{-4} \mathrm{~s}$
40. A boat is travelling in a river with a speed $10 \mathrm{~m} / \mathrm{s}$ along the stream flowing with a speed $2 \mathrm{~m} / \mathrm{s}$. From this boat a sound transmitter is lowered into the river through a rigid support. The wavelength of the sound emitted from the transmitter inside the water is 14.45 mm . Assume that attenuation of sound in water and air is negligible.
(a) What will be the frequency detected by a receiver kept inside the river downstream?
(b) The transmitter and the receiver are now pulled up into air. The air is blowing with a speed $5 \mathrm{~m} / \mathrm{s}$ in the direction opposite to the river stream. Determine the frequency of the sound detected by the receiver.
(Temperature of the air and water $=20^{\circ} \mathrm{C}$, Density of river water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$;
Bulk modulus of the water $=92.088 \times 10^{9} \mathrm{~Pa}$;
Gas constant R = $8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$;
Mean molecular mass of air $=28.8 \times 10^{-3} \mathrm{~kg} /$ mol; $\mathrm{C}_{\mathrm{P}} / \mathrm{C}_{\mathrm{v}}$ for air $=1.4$)
(A) $1.007 \times 10^{5} \mathrm{~Hz} ; 1.0304 \times 10^{5} \mathrm{~Hz}$
(B) $1.117 \times 10^{5} \mathrm{~Hz} ; 1.57 \times 10^{5} \mathrm{~Hz}$
(C) $10.07 \times 10^{4} \mathrm{~Hz} ; 103.04 \times 10^{3} \mathrm{~Hz}$
(D) $10.07 \times 10^{5} \mathrm{~Hz}, 103.04 \times 10^{7} \mathrm{~Hz}$

SECTION-C

NUMERICAL ANSWER TYPE (NAT) (Q. 41-60)
41. A copper stip 2.0 cm wide and 1.0 mm thick is placed in a magnetic field with $B=$ $1.5 \mathrm{~Wb} / \mathrm{m}^{2}$ (The number of free electrons per unit volume of copper is $8.4 \times 10^{28} \mathrm{~m}^{-3}$ and charge on electron is $1.6 \times 10^{-19} \mathrm{C}$). If a current of 200 A is set up in the strip, then calculate the Hall potential difference appears across the strip.

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
42. The electric potential V as a function of distance x (in metre) is given by :

$$
V=\left(5 x^{2}+10 x-9\right) V
$$

What would be the value of electric field of $x=1 \mathrm{~m}$?
43. The interference pattern is obtained using a yellow light of wavelength in which 20 equally spaced fringes occupy 2.0 cm on the screen. On replacing the yellow source by another monochromatic source but making no other changes, it is noticed that 30 fringes occupy 2.4 cm on the screen. What is the wavelength of the second source ?
44. Two strong lines in the spectrum of sodium have wavelengths of $5890 \AA$ and 5896 \AA A. In order to resolve these lines in the second order spectrum how many lines of the grating must be illuminated?
45. A vessel of volume $\mathrm{V}=30$ litre contains an ideal gas at temperature, $\mathrm{T}=0^{\circ} \mathrm{C}$. Keeping temperature constant, a part of the gas is allowed to escape from the vessel causing the pressure to fall dqwn by $\Delta P=0.78 \mathrm{~atm}$. Find the mass of the gas released. Its density under normal conditions is $\rho=1.3 \mathrm{~g} / \mathrm{It}$.
46. A cart is moving along x direction with a velocity of $4 \mathrm{~ms}^{-1}$. A person on the cart throws a stone with velocity of $6 \mathrm{~ms}^{-1}$ relative to himself. In the frame of reference of the cart the stone is thrown in y-z plane making an angle of 30° with vertical z axis. At the highest point of its trajectory the stone hits an object of equal mass hung vertically from branch of tree by means of a string of length L. The stone gets embedded in the object. Calculate the speed of combined mass immediately after the embedding w.r.t. an observer on the ground.
47. A man of weight W is standing on a spring balance in a satellite revolving about the earth. Then what would be his weight read by spring balance?

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com Page 20
48. A particle is projected with a velocity of $19.6 \mathrm{~ms}^{-1}$ at an angle of 60° to the horizontal. What is the value of greatest distance of the projectile from a plane inclined at 30° to the horizontal?
49. The Young's double slit experiment is done in a medium of refractive index 4/3. A light of 600 nm wavelength is falling on the slits having 0.45 mm separation. The lower slit S_{2} is covered by a thin glass sheet of thickness $10.4 \mu \mathrm{~m}$ and refractive index 1.5. The interference pattern is observed on a screen placed 1.5 m from the slits as shown in the figure. Find the location of central maximum (bright fringe with zero path difference) on the y-axis.

50. The ionization energy of a hydrogen like Bohr atom is 8 rydberg. What is the wavelength of the radiation emitted when the electron jumps from the first excited state to the ground state?
51. The ionization energy of a hydrogen like Bohr atom is 8 rydberg. What is the radius of the first orbit for this atem?
52. In an experiment of Compton effect the wavelength of incident radiation is 1.81 . Calculate the wavelength of scattered radiation at , $\theta=30^{\circ}$. Also calculate the velocity of corresponding recoiled electron.
53. Find the Coulomb barriers of ${ }_{8} \mathrm{O}^{16},{ }_{41} \mathrm{Nb}^{93}$ and ${ }_{83} \mathrm{Bi}^{209}$ as seen by a proton.

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
54. NaCl crystallizes as cubic structure. Taking the molecular weight of NaCl as 58.46 and the density at room temperature as $2.167 \mathrm{gm} / \mathrm{cm}^{3}$, calculate the lattice constant. (Avogadro number $=6.02 \times 10^{23}$ per gmole)
55. For the common emitter configuration of transistor, as shown in the figure find emitter current.

56. For the common emitter configuration of transistor, as shown in the figure find voltage across emitter.

57. An electrically operated lift weighs 3 ton. It is raised 7 m in 5 second by a constant lifting force which is removed by switching off the current at such an instant that the weight of the lift bring it to rest in completing 7 m lift. Neglecting the frictional and other resistance. Find the maximum velocity which the lift attains.
58. An electrically operated lift weighs 3 ton. It is raised 7 m in 5 second by a constant lifting force which is removed by switching off the current at such an instant that the weight of the lift bring it to rest in completing 7 m lift. Neglecting the frictional and other resistance. Find the acceleration produced by the constant lifting force.

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
59. An electrically operated lift weighs 3 ton. It is raised 7 m in 5 second by a constant lifting force which is removed by switching off the current at such an instant that the weight of the lift bring it to rest in completing 7 m lift. Neglecting the frictional and other resistance. Find the height to which the lift has risen when the current is switched off and
60. An electrically operated lift weighs 3 ton. It is raised 7 m in 5 second by a constant lifting force which is removed by switching off the current at such an instant that the weight of the lift bring it to rest in completing 7 m lift. Neglecting the frictional and other resistance. Find the accelerating force.

Answer Key

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CLAT, SSC, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

SECTION-A

MULTIPLE CHOICE QUESTIONS (MCQs) (Q, $1-10$)
1.(B) We know position vector in Cartesian coordinate system.

$$
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}
$$

2.(B) By kepler's law

$$
\mathrm{T}^{2} \alpha \mathrm{a}^{3}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001252666
Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{array}{ll}
\mathrm{T}^{2}=k \mathrm{a}^{3} & \mathrm{a}=\mathrm{R} \\
\mathrm{~T}^{2}=\mathrm{K} \mathrm{R}^{3} &
\end{array}
$$

In new case $\quad T_{2}=\frac{8 Y}{T}$
$(8 \mathrm{~T})^{2}=\mathrm{K}(\mathrm{R})^{3}$
eq. (2) / eq. (1)
$\frac{R_{2}^{3}}{R^{3}}=\frac{(8)^{2}}{1}$
$R_{2}^{3}=(8)^{2} R^{3}$

$$
\begin{aligned}
& R_{2}=(8)^{2 / 3} R=\frac{8}{(8)^{1 / 3}} R=\frac{8}{2} R \\
& R_{2}=4 R
\end{aligned}
$$

3.(C) A solid sphere is rolling along the flat surface without slipping and p is the point on the surface of sphere.

So, angular momentum of sphere about P is $L=2 m v \times \frac{a}{2}$

$=m v a$

4.(C)
$\mathrm{m}_{1}=\mathrm{m}$

$\mathrm{m}_{2}=\mathrm{m}$

Toll Free: 1800-2000-092

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

Mobile: 9001297111, 9829619614, 9001252666

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Let v_{1} is velocity of first mass after collision and v_{2} is velocity of second mass after collision.

By the conservation law of momentum,

$$
\begin{equation*}
m v=m_{1} v_{1}+m_{2} v_{2} \tag{i}
\end{equation*}
$$

But

$$
\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}
$$

$\Rightarrow \quad m v=m v_{1}+m v_{2}$
$\Rightarrow \quad v=v_{1}+v_{2}$
By conservation law of energy,

$$
\begin{align*}
& \frac{1}{2} m v^{2}=\frac{1}{2} m v_{1}^{2}+\frac{1}{2} m v_{2}^{2} \\
\Rightarrow \quad & v^{2}=v_{1}^{2}+v_{2}^{2} \tag{iii}
\end{align*}
$$

Solving Eqs. (ii) and (iii) we get

$$
v_{1}=0, v_{2}=v
$$

Velocity of first mass is zero whereas yelocity of second mass attain the velocity of first .

Now, the velocity of centre of centre of mass is given

Hence, the velocity of first mass w.r.t centre of mass $=0-v_{\text {см }}$

That of second $=v-\frac{1}{2} v=\frac{1}{2} v$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Total kinetic energy as seen from centre of mass
$=\frac{1}{2} m^{\left(\frac{1}{2} v\right)^{2}+\frac{m}{2}\left(\frac{1}{2} v\right)^{2}}=\frac{m}{2}\left[\frac{v^{2}}{4}+\frac{v^{2}}{4}\right]=\frac{m v^{2}}{4}$
5.(B) Let M be the mass, l be the length and R be the radius of a solid cylinder as shown in fig. . We have to calculate moment of inertia of this solid cylinder about its axis.

Volume of the cylinder $=\pi R^{2} l$
mass per unit volume of the cylinder ,

$$
\rho=\frac{\mathrm{M}}{\pi \mathrm{R}^{2} l}
$$

Draw two cylindrical surface of radii x and $(x+d x)$ coaxial with the given cylinder as shownin Fig. This part of the cylinder may be considered as a hollow cylinder of radius x and thickness $d x$

Area of cross section of the wall of this hollow cylinder $=2 \pi x . d x$.
Volume of material in this elementary hollow cylinder $=(2 \pi \mathrm{xdx}) l$
Mass of the elementary hollow cylinder
$\mathrm{m}=(2 \pi \mathrm{xdx}) l \times \rho=(2 \pi \mathrm{xdx}) l \times \frac{\mathrm{M}}{\pi \mathrm{R}^{2} l}$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$m=\frac{2 M}{R^{2}} x d x$.
As radius of this cylinder is x, moment of inertia of the elementary cylinder about the given axis is

$$
d I=m x^{2}=\left(\frac{2 M}{R^{2}} x d x\right) \quad x^{2}=\frac{2 M}{R^{2}} x^{3} d x
$$

$\therefore \quad$ Moment of inertia of the solid cylinder about the given axis is

$$
\begin{gathered}
I=\int_{x=0}^{x=R} \frac{2 M}{R^{2}} x^{3} d x=\frac{2 M}{R^{2}}\left[\frac{x^{4}}{4}\right]_{x=0}^{x=R}=\frac{2 M}{4 R^{2}}\left(R^{4}\right. \\
I=\frac{1}{2} M R^{2}
\end{gathered}
$$

Note that this formula for I does not depend ypon length of the cylinder.
6.(C)

$$
\begin{aligned}
& \overrightarrow{\mathrm{L}}=\mathrm{I} \omega=\mathrm{mr}^{2} \omega=\mathrm{m}^{[l / 2 \sin \theta]^{2} \omega}=\frac{\mathrm{m} l^{2}}{4} \omega \sin ^{2} \theta \\
& \overrightarrow{\mathrm{~L}}=\frac{\mathrm{m} l^{2}}{4} \omega \sin ^{2} \omega \mathrm{t} \\
& \frac{\mathrm{~d} \overrightarrow{\mathrm{~L}}}{\mathrm{dt}}=\frac{\mathrm{m} l^{2}}{4} \omega \frac{\mathrm{~d}}{\mathrm{dt}}\left(\sin ^{2} \omega \mathrm{t}\right)=\frac{\mathrm{ml}}{4} \omega[2 \sin \omega t \cos \omega t \times \omega]=\frac{\mathrm{m} l^{2}}{2} \omega^{2} \sin \omega t \cos \omega t
\end{aligned}
$$

< $\frac{\mathrm{dL}}{\mathrm{dt}}=\frac{\mathrm{m} l^{2}}{4} \omega^{2} \sin 2 \theta$
7.(D) Here $\frac{\mathrm{mg}^{\prime}}{\mathrm{mg}}=\left(\frac{\mathrm{R}}{\mathrm{R}+\mathrm{h}}\right)^{2}$ Now

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Now

$$
\frac{W_{2}}{W_{0}} \cdot\left(\frac{R}{R+3 R}\right)^{2} \text { and } \frac{W_{1}}{W_{0}}=\left(\frac{R}{R+R}\right)^{2}
$$

$$
\therefore \quad \frac{\mathrm{W}_{2}}{\mathrm{~W}_{1}}=\left(\frac{\mathrm{R}+\mathrm{R}}{\mathrm{R}+3 \mathrm{R}}\right)^{2}=\frac{1}{4} .
$$

But W_{1} is given to be $W \quad W_{2}=\frac{W_{1}}{4}=\frac{W}{4}$.
8.(C) In Fig., position A of the upper disc shows underformed spring. Let the external force applied be F. If on applying the force F, the upper disc of mass m_{1} is pressed downward downwards by x_{1} (as at B)

$$
\begin{equation*}
\mathrm{F}+\mathrm{m}_{1} \mathrm{~g}=\mathrm{kx} \mathrm{x}_{1} \tag{1}
\end{equation*}
$$

Now if on releasing the upper disc the extension of the spring is x_{2} (as at C), then by conservation of mechanical ehergy

$$
\begin{array}{ll}
& \frac{1}{2} k x_{1}^{2}=\frac{1}{2} k x_{2}^{2}+m_{1} g\left(x_{1}+x_{2}\right) \\
\text { i.e., } & \left.\frac{1}{2} k\left(x_{1}^{2}-x_{2}^{2}\right)=m_{1} g\left(x_{1}\right)+x_{2}\right) \\
\text { i.e., } & x_{1}=\frac{2 m_{1 g}}{k} x_{2}
\end{array}
$$

(B)

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Now the lower disc will leave the table if and only if

$$
\mathrm{kx}_{2}>\mathrm{m}_{2} \mathrm{~g} \quad \text { i.e., } \quad \mathrm{x}_{2}>\mathrm{m}_{2} \mathrm{~g} / \mathrm{k}
$$

Substituting the values of x_{1} and x_{2} from Eqns. (1) and (3) in (2)

$$
\frac{F+m_{1} g}{k}=\frac{2 m_{1} g}{k}+\left(>\frac{m_{2} g}{k}\right)
$$

or

$$
F>\left(m_{1}+m_{2}\right) g \text { i.e., } \quad F_{\min }=\left(m_{1}+m_{2}\right) g
$$

So the lower disc will spring back and rise off the table ff the spring is pressed by a face greater than the weight of the system.
9.(D) For projectile motion in polar coordinates

$$
\hat{y}=\hat{e}_{r} \sin \theta+\hat{e}_{\phi} \cos \theta
$$

So, $\quad \vec{a}=-g\left[\hat{e}_{r} \sin \phi+\hat{e}_{\phi} \cos \phi\right]$
$a_{r}=-g \sin \phi$
$a_{\phi}=-g \cos \phi$

$$
\begin{equation*}
\theta=30^{\circ} \tag{1}
\end{equation*}
$$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
EMail: vpmclasses@yahoo.com /info@vpmclasses.com

So, $\quad H=\frac{U^{2} \sin ^{2} \theta}{2 g}$
$H=\frac{U^{2}}{8 g}$
and $\quad R=\frac{u^{2} \sin 2 \theta}{g}$
$\frac{\mathrm{R}}{2}=\frac{\mathrm{u}^{2} \times \sin 60^{\circ}}{2 \mathrm{~g}}$
$\frac{R}{2}=\frac{\sqrt{3} u^{2}}{4 g}$
...(3)
so, $\quad \sin \quad \phi=\frac{\frac{u^{2}}{8 g}}{\sqrt{\frac{3 u^{4}}{16 g^{2}}+\frac{u^{4}}{64 g^{2}}}}=\frac{1 / 8}{\sqrt{\frac{12+1}{64}}}$
$\sin \phi=\frac{1}{\sqrt{13}}$

$\cos \phi=\sqrt{13}$
$a_{r}=-g \sin \phi=-\frac{g}{\sqrt{13}}$

$$
a_{\phi}=-g \cos \phi=-g \sqrt{\frac{12}{13}}
$$

Ans.

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
10.(A) We know that according to Newton's law of motion

$$
\vec{F}=m \vec{a} \text { i.e., } \quad \vec{a}=\vec{F} / m
$$

But here

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}=4 \overrightarrow{\mathrm{i}}+8 \overrightarrow{\mathrm{j}}+10 \vec{k} \text { and } \mathrm{m}=3 \mathrm{~kg} \\
& \overrightarrow{\mathrm{a}}=(1 / 3)[4 \vec{i}+8 \vec{j}+10 \vec{k}] \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

Further according to the equation of motion

$$
\begin{aligned}
& \overrightarrow{\mathrm{s}}=\overrightarrow{\mathrm{u} t}+(1 / 2) \overrightarrow{\mathrm{a} t^{2}} \\
& \overrightarrow{\mathrm{~s}}=0 \times(1 / 2)(1 / 3)[4 \vec{i}+8 \vec{j}+10 \vec{k}] \times 3^{2} \\
& \overrightarrow{\mathrm{~s}}=[6 \overrightarrow{\mathrm{i}}+12 \vec{j}+15 \vec{k}]
\end{aligned}
$$

so the co-ordinates of the particle after 3 sec. are $[6,12,15]$.
11.(B) Given $x=3 y z^{2}$

$$
\begin{aligned}
& \mathrm{X}=\mathrm{C}=\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2} \\
& \text { and } \mathrm{z}=\mathrm{BMT}^{-2} \mathrm{~A}^{-1}
\end{aligned}
$$

So, $y=\frac{x}{3 z^{2}}=\frac{\left[M^{-1} L^{-2} T^{4} A^{2}\right]}{\left[M T^{-2} A^{-1}\right]^{2}}=M^{-3} L^{-2} T^{4+4} A^{2+2}$
$y \quad=M^{3} L^{-2} T^{8} A^{4}$
12.(C) Let v_{2} be velocity of m_{2} after collision.

By law of conservation of momentum
$m_{1} u_{1}=\frac{m_{1} \times u_{1}}{1.5}+m_{2} v_{2}$
$m_{2} v_{2}=m_{1} u_{1}-\frac{10 m_{1} u_{1}}{15}=3^{\frac{1}{3} m_{1} u_{1}}$
By conservation of energy

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{gather*}
\frac{1}{2} m_{1} u_{1}^{2}=\frac{1}{2} m_{1}\left(\frac{u_{1}}{1.5}\right)^{2}+\frac{1}{2} m_{2} v_{2}^{2} \\
m_{2} v_{2}^{2}=\frac{5}{2} m_{1} u_{1}^{2} \tag{2}
\end{gather*}
$$

and $\mathrm{k}_{1} \mathrm{x}_{1}=\mathrm{k}_{2} \mathrm{x}_{2}$
or $\quad \frac{\mathrm{x}_{1}}{\mathrm{x}_{2}}=\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}$

$$
x_{2}=\frac{k_{1}}{k_{2}} x_{1}
$$

By equation (1) and (2)

$$
x_{1}=A-x_{2}
$$

$$
x_{1}=A-\frac{k_{1}}{k_{2}} x_{1}
$$

$$
x_{1}\left[1+\frac{k_{1}}{k_{2}}\right]=A
$$

14.(A) Here

$$
\mathrm{F}_{\mathrm{PQ}}=\frac{\mathrm{q}^{2}}{4 \pi \varepsilon_{0}(\sqrt{2 \ell})^{2}}
$$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com

For equilibrium

$$
\frac{q^{2}}{4 \pi \varepsilon_{0}(\sqrt{2 \ell})^{2}}=\frac{q Q \cos 45^{\circ}}{4 \pi \varepsilon_{0} \ell^{2}}+\frac{q Q \cos 45^{\circ}}{4 \pi \varepsilon_{0} \ell^{2}}=\frac{2 q Q}{4 \pi \varepsilon_{0}(\sqrt{2 \ell})^{2}}
$$

i.e. $\quad \frac{q}{Q}=\frac{2 \sqrt{2}}{1}$
15.(C) The intensity of light is $I(\theta)=I_{0} \cos ^{2}$

$$
\text { where } \quad \delta=\frac{2 \pi}{\lambda}(\Delta x)=\left(\frac{2 \pi}{\lambda}\right) d(\sin \theta)
$$

(a) For $\theta=30^{\circ}$

$$
\begin{aligned}
& \lambda=\frac{c}{v}=\frac{3 \times 10^{8}}{10^{6}}=300 \mathrm{~m} \text { and } \mathrm{d}=150 \mathrm{~m} \\
& \\
& \delta=\left(\frac{2 \pi}{300}\right)(150)\left(\frac{1}{2}\right)=\frac{\pi}{2}
\end{aligned}
$$

$$
\therefore \quad \frac{\delta}{2}=\frac{\pi}{4}
$$

$\therefore \quad \mathrm{I}(\theta)=\mathrm{I} \cos ^{2}\left(\frac{\pi}{4}\right)=\frac{\mathrm{I}_{0}}{2}$
(b) For $\theta=90^{\circ}$

$$
\delta=\left(\frac{2 \pi}{300}\right)(150)(1)=\pi
$$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
or $\frac{\delta}{2}=\frac{\pi}{2}$
and $\quad I(\theta)=0$
(c) For $\theta=0^{\circ}, \delta=0$ or $\frac{\delta}{2}=0$
$\therefore \quad \mathrm{I}(\theta)=\mathrm{I}_{0}$
[option (c)]
16.(C) The diagrammatic representation of the given question is shown in figure.

The electrical field \vec{E} at all points on the x-axis will not have the same direction.
For $-\mathrm{d} \leq \mathrm{x} \leq \mathrm{d}$, electric field is along positive x -axis while for all other points it is along negative x-axis.

The electric field \vec{E} at all points on the y-axis will be parallel to the x-axis (ie, \hat{i})
The electrical potential at the origin due to both the charges is zero, hence, no work is done in bringing a test charge from infinity to the origin.

Dipole moment is directed from the $-q$ charge to the $+q$ charge (ie,$-\hat{i}$ direction)
17.D) The equation of motion is

$$
F=\frac{\frac{m d V(x, t)}{d t}}{d t}=q
$$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\frac{d v}{d t}-\frac{v d v}{d x}=\frac{q}{x}\left(E_{0}-a x\right)$
By integrating
$\frac{1}{2} v^{2}-\frac{q}{m}\left[E_{0} x-\frac{1}{2} a x^{2}\right]=$ const.(c)
at $x=0, \quad v=0, s o, c=0$
$v^{2}=\frac{2 q}{m}\left[E \cdot x-\frac{1}{2} a x^{2}\right]$
$\because \quad \mathrm{V}=0 \quad \mid \mathrm{X}=\mathrm{X}_{\mathrm{m}}$

So, $\quad x=x_{m}=\frac{2 E_{0}}{a}$
18.(B) In adiabatic process slop of $p-v$ graph

$$
\frac{d p}{d v}=-\gamma \frac{p}{v}
$$

slope $\propto \gamma$
from given graph

$$
(\text { slope })_{2}>(\text { slope })_{1}
$$

$$
\gamma_{2}>\gamma_{1}
$$

Therefore 1 should correspond to O_{2} gas whose $\gamma=1.4$ and 2 should correspond to He gas ($\gamma=$.67)
19.(A) The equations of the transition lines are
$\log \mathrm{P}=9.05-\frac{1800}{\mathrm{~T}}$
(solid gas)
$\log P=6.78-\frac{1310}{T}$ (Liquid gas)

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

At triplet point $\left(\mathrm{T}=\mathrm{T}_{\mathrm{r}}\right)$

$$
\begin{aligned}
& (\log P)_{\text {s.g. }}=(\log P)_{L . . g .} \\
& 9.05-\frac{1800}{T_{r}}=6.78-\frac{1310}{T_{r}}
\end{aligned}
$$

$$
T_{r}=\frac{490}{2.27}=216^{\circ} \mathrm{K}
$$

20.(D) $\left(\because z=0, x^{2}+y^{2}=1\right)$
from stokes-curl theorem.

$$
\vec{\nabla} \times \overrightarrow{\mathrm{A}}=\hat{\mathrm{k}}
$$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

So, $\quad \int_{C} \vec{A} \cdot d \vec{r} \quad \iint_{S} \hat{k} \cdot \hat{k} d x d y \quad \int_{x=-1}^{1} \int_{y=-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} d x d y$

$$
\int_{C} \overrightarrow{\mathrm{~A}} \cdot \mathrm{~d} \overrightarrow{\mathrm{r}}=2 \int_{-1}^{+1} \sqrt{1-\mathrm{x}^{2}} \mathrm{dx}=4 \int_{0}^{1} \sqrt{1-\mathrm{x}^{2}} \mathrm{dx}
$$

So, $\quad \int_{C}^{\vec{A} \cdot d \vec{r}}=4^{\int_{\frac{\pi}{2}}^{0} \sin \theta(-\sin \theta d \theta)}=2 \int_{0}^{\pi / 2} 2 \sin ^{2} \theta d \theta$

$$
=2 \cdot \frac{\pi}{2}=\pi
$$

$$
\int_{C} \vec{A} \cdot d \vec{r}=\pi
$$

21.(D) $P_{\text {final }}=P_{\text {initial }}$
$\frac{M_{0}^{\prime} v_{f}}{\sqrt{1-\frac{v_{f}^{2}}{c^{2}}}}=\frac{M_{0} v_{i}}{\sqrt{1-\frac{v_{i}^{2}}{c^{2}}}}=\frac{M_{0}(0.6 c)}{\sqrt{1-(0.6)^{2}}}=\frac{m_{0}(0.6 c)}{(0.8)}$

$$
\begin{equation*}
\frac{M_{0}^{\prime} v_{f}}{\sqrt{1-\frac{v_{f}^{2}}{c^{2}}}}=\frac{3}{4} m_{0} c \tag{1}
\end{equation*}
$$

$$
\frac{M_{0} c^{2}}{\sqrt{1-\frac{v_{i}^{2}}{c^{2}}}}=\frac{m_{0} c^{2}}{\sqrt{1-\frac{v_{i}^{2}}{c^{2}}}}+2 m_{0} c^{2}=\frac{m_{0} c^{2}}{(0.6)}+2 m_{0} c^{2}
$$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{align*}
& \frac{M_{0}^{\prime} c^{2}}{\sqrt{1-\frac{v_{f}^{2}}{c^{2}}}}=\frac{5}{3} m_{0} c^{2}+2 m_{0} c^{2} \\
& \frac{M_{0}^{\prime} c^{2}}{\sqrt{1-\frac{v_{f}^{2}}{c^{2}}}}=\frac{11}{3} m_{0} c^{2} \tag{2}
\end{align*}
$$

equation (1), equation (2)

$$
\frac{v_{f}}{c^{2}}=\frac{3}{4} \times \frac{3}{11 c} \Rightarrow v_{f}=\frac{9}{44} c
$$

$\mathrm{V}_{\mathrm{f}}=0.2045 \mathrm{c}=0.20 \mathrm{c}$
so from equation (2)
$M_{0}^{\prime}=\frac{11}{3} m_{0} \sqrt{1-(0.20)^{2}}=\frac{11}{3} M_{0}^{\prime}(0.979)$
$\mathrm{M}_{0}^{\prime}=3.59 \mathrm{~m}_{0}$
$\mathrm{M}_{0}^{\prime}=3.6 \mathrm{~m}_{0}$
22.(B) For a particle moving in one-dimensional box energy eigen value is

$$
\begin{equation*}
\mathrm{E}=\frac{\mathrm{n}^{2} \pi^{2} \hbar^{2}}{2 \mathrm{ma}^{2}} \tag{1}
\end{equation*}
$$

and eigen function is

$$
\Delta \psi=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)
$$

$$
\int_{-\infty}^{+\infty} \psi_{n}^{*}(x) \psi_{m}(x) d x=\frac{2}{a} \int_{0}^{a} \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi x}{a}\right) d x=0
$$

so wave function are orthogonal not normalised. One-dimensional box is not degenerate. Degeneracy is appear in 3-D box.

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Energy difference $\Delta E=E_{2}-E_{1}=\frac{3 \pi^{2} \hbar^{2}}{2 m a^{2}}$

$$
\Delta \mathrm{E}=\mathrm{E}_{3}-\mathrm{E}_{2}=\frac{\frac{5 \pi^{2} \hbar^{2}}{2 \mathrm{ma}^{2}}}{}
$$

So, $\Delta \mathrm{E}=3: 5: 7 \ldots .$.
So, energy difference $\Delta \mathrm{E}$ is of increasing order not constant.

$$
\because \quad<x\rangle=\int_{0}^{a} \psi_{x}^{*} \psi d x=\frac{2}{a} \int_{0}^{a} x \sin ^{2} \frac{n \pi x}{a} d x=\frac{2}{a} \times \frac{a^{2}}{4}=\frac{a}{2}
$$

$$
\langle x\rangle=\frac{a}{2}
$$

23.(B) F.CC have highest packing factor 74% So, having highest density.
24.(C) Paramagnetic Substance. $X \neq+$ positive (less) magnetic permeability $\mu>1$ (positive)

$$
X \propto \frac{1}{\mathrm{~T}} \Rightarrow \mathrm{X}=\frac{\mathrm{C}}{\mathrm{~T}}
$$

Ferromagnetic substance. $X \rightarrow$ positive (large)
$\mu \gg 1$ (positive)
$X=T-T_{C}$
Diamagnetic substance. X of diamagnetic substance is negative and does not depend on temperature.

$$
X \not x \frac{1}{\mathrm{~T}}
$$

25.(C) Thermal expansion of isotropic object does not depends on shape. Size and any hole or cavity. So, Expansion in volume of both A, B bodies are same.

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
26.(B) Suppose the length of the course be S and let car takes t seconds. As is clear from the statement both the cars reach their destination at the same time since the race ends in a dead heat.
\therefore For the first car

$$
S=V_{1} t+2^{\frac{1}{2} a_{1} t^{2}}
$$

For the 2nd Car

$$
S=V_{2} t+\frac{1}{2} a_{2} t^{2} .
$$

on subtracting, we get

$$
\begin{array}{ll}
& 0=\left(V_{1}-V_{2}\right) t+\frac{1}{2}\left(a_{1}-a_{2}\right) t^{2} . \\
\text { or } & t\left[\frac{1}{2}\left(a_{1}-a_{2}\right) t+\left(V_{1}-V_{2}\right)\right]=0
\end{array}
$$

$\therefore \quad \mathrm{t}=0$ and $\mathrm{t}=$

$$
\frac{2\left(V_{1}-V_{2}\right)}{\left(a_{1}-a_{2}\right)}
$$

Here $t=0$ indicates the starting position

weget,

$$
S=\frac{-2 V_{1}\left(V_{1}-V_{2}\right)}{\left(a_{1}-a_{2}\right)}+\frac{1}{2} a_{i} \frac{4\left(V_{1}-V_{2}\right)^{2}}{\left(a_{1}-a_{2}\right)}
$$

on simplifying we get the desired expression

$$
\mathrm{S}=\frac{2\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)\left(\mathrm{V}_{1} \mathrm{a}_{2}-\mathrm{V}_{2} \mathrm{a}_{1}\right)}{\left(\mathrm{a}_{1}-\mathrm{a}_{2}\right)^{2}}
$$

27.(B) Angular momentum about point P is

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
L & =\mathrm{mvr} \\
\mathrm{~m} & \rightarrow 2 \mathrm{M} \\
\mathrm{r} & \rightarrow \frac{7 \mathrm{a}}{2}
\end{aligned}
$$

So, $L=2 m \times \frac{7 a}{2} \times v$
$\mathrm{L}=7 \mathrm{mav}$
Ans. (B)
28.(B) We know

$$
\frac{1}{2} l \omega^{2}=\frac{1}{2} \mathrm{kT} \text { or } \omega^{2}=\frac{\mathrm{kT}}{\mathrm{l}} \text { or } \omega=\sqrt{\frac{\mathrm{KT}}{\mathrm{I}}}=\sqrt{\frac{1.38 \times 10^{-23} \times 300}{2.1 \times 10^{-39} \times 10^{-3} \times 10^{-4}}}
$$

on simplifying we get $=\omega=4.43 \times 10^{12} \mathrm{red} / \mathrm{s}$
29.(B) Mass flux $=v_{a} A_{a} \rho_{a}=v_{b}$

Here $A_{a}=2 A_{b}$ and $v_{a}=v_{b}=\sqrt{2 g h}$
$\therefore \quad \frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{b}}}=\frac{1}{2}$
30.(B) Here

$$
\mathrm{k}_{1}=\frac{\mathrm{mg}}{\Delta \mathrm{~L}}
$$

Now

$$
\mathrm{k}_{2}=\frac{\mathrm{mg}}{\Delta \mathrm{~L} / 2}=2 \mathrm{k}_{1}
$$

Website: www.vpmclasses.com

Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com

$$
\begin{aligned}
& \therefore \mathrm{f}_{2}=\frac{1}{2 \pi} \sqrt{\frac{2 \mathrm{k}_{1}}{\mathrm{~m}}} \\
& \text { and } \mathrm{f}_{2}=\sqrt{2 \mathrm{f}_{1}}
\end{aligned}
$$

SECTION-B

MULTIPLE SELECT QUESTIONS (MSQs) (Q. 11-35)

31. (A,B $) \quad \overrightarrow{\mathrm{V}}_{1}=\mathrm{V}_{0}(2 \hat{\ell}+\hat{\mathrm{J}}) \quad \mathrm{m}_{1}=2 \mathrm{~m}$

$$
\overrightarrow{\mathrm{V}}_{2}=0 \quad \mathrm{~m}_{2}=3 \mathrm{~m}
$$

Velocity of center of mass $\vec{V}_{c m}=\frac{V_{1} m_{1}+V_{2} m_{2}}{m_{1}+m_{2}}$

$$
\begin{aligned}
& \vec{V}_{\mathrm{cm}}=\frac{2 \mathrm{~m}\left(\mathrm{~V}_{0}(2 \hat{\ell}+\hat{\jmath})\right)}{2 \mathrm{~m}+3 \mathrm{~m}} \\
& \overrightarrow{\mathrm{~V}}_{\mathrm{cm}}=\frac{2}{5} \mathrm{~V}_{0}[2 \hat{\ell}+\hat{\jmath}] \\
& \left|\overrightarrow{\mathrm{V}}_{\mathrm{cm}}\right|=\frac{2 \mathrm{~V}_{0}}{\sqrt{5}} \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

So, velocity of particle of mass ' $2 m$ ' before collision

$$
\begin{aligned}
& V_{1}=\nabla_{1}-V_{c m}=V_{0}(2 \hat{\ell}+\hat{\jmath})-\frac{2}{5} V_{0}[2 \hat{\ell}+\hat{\jmath}] \\
& \vec{V}_{1}=\frac{3}{5} V_{0}(2 \hat{\ell}+\hat{\jmath}) \\
& V_{1}{ }^{\prime}=\frac{3 V_{0}}{\sqrt{5}} \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

Similarly velocity of particle of mass ' 3 m ' before collision $\overrightarrow{\mathrm{V}}_{2}=\overrightarrow{\mathrm{V}}_{2}-\mathrm{V}_{\mathrm{cm}}$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{array}{r}
=\begin{array}{r}
0-\frac{2}{5} \mathrm{~V}_{0}[2 \hat{\ell}+\hat{\jmath}] \\
= \\
\overrightarrow{\mathrm{V}}^{\prime}{ }^{\prime}=\frac{2}{5} \frac{2}{5} \mathrm{~V}_{0}[2 \hat{\ell} \mathrm{~m} / \mathrm{\jmath}] \\
\hline
\end{array}
\end{array}
$$

32. $(\mathbf{A}, \mathbf{B}, \mathbf{D}) \quad$ Let there be a small element of length $d \ell$ at distance L from the end of rotation axis.

Mass of the element $\mathrm{d} \ell=\frac{\mathrm{M}}{\mathrm{L}} \mathrm{d} \ell$
Small radial force on this element $=\left(\frac{\mathrm{M}}{\mathrm{L}} \mathrm{d} \ell\right) \ell \omega^{2}$
\therefore Total force $=\int_{0}^{L}\left(\frac{M}{L} d \ell\right) \ell \omega^{2}=\frac{M}{L} \omega^{2} \int_{0}^{L} \ell d \ell=\frac{M L \omega^{2}}{2}$
33.(B,D)

$$
\begin{aligned}
\text { Here } \mathrm{I} & =\Sigma \mathrm{MR}^{2}=2 \times \mathrm{m} *\left(\frac{\ell}{2}\right)^{2}+2 \times \mathrm{M} \times\left(\frac{\ell^{2}}{4}\right)^{2}=\frac{\mathrm{m} \ell^{2}}{2}+\frac{\mathrm{M} \ell^{2}}{8}=\frac{\ell^{2}}{2}\left(\mathrm{~m}+\frac{\mathrm{M}}{4}\right) \\
& \left.=0.125 \ell^{2}(4 \mathrm{~m}+\mathrm{M})\right)
\end{aligned}
$$

34.(A,C,D) Let x_{1}, x_{2} represent the right extreme and left extreme position of block after completion of $1^{\text {st }}$ half and $1^{\text {st }}$ complete oscillations, respectively. These distances are measured from natural positions of the spring.

Similarly x_{3}, x_{4} represent for $I I^{\text {nd }}$ half and $I I^{\text {nd }}$ complete oscillations and after completion of $\mathrm{n}^{\text {th }}$ cycle of oscillation, the position is described as $\mathrm{X}_{2 n}$.

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

From work-energy theorem
$\frac{k x_{0}^{2}}{2}-\frac{k x_{1}^{2}}{2}=f\left(x_{0}+x_{1}\right)$ [For left and right extreme positions of $I^{\text {st }}$ half of $I^{\text {st }}$ cycle].
$\Rightarrow x_{0}-x_{1}=\frac{2 f}{k}$
Now apply work-energy theorem for right and left extreme position of $I^{\text {nd }}$ half of $^{\text {st }}$ cycle, we get

$$
\begin{aligned}
& \frac{k x_{1}^{2}}{2}-\frac{k x_{2}^{2}}{2}=f\left(x_{1}+x_{2}\right) \\
\Rightarrow \quad & x_{1}-x_{2}=2 f / k
\end{aligned}
$$

Similarly, for other subsequent cycles, we get

$$
\begin{aligned}
& x_{2}-x_{3}=2 f / k \\
& x_{3}-x_{4}=2 f / k \\
& \vdots \\
& x_{2 n-1}-x_{2 n}=2 f / k
\end{aligned}
$$

where $x_{2 n}$ is the elongation in spring from natural length after n cycles.
Decrease in amplitude after ${ }^{s t}$ cycle is,$\Delta A_{1}=x_{0}-x_{2}=4 \mathrm{f} / \mathrm{k}$
Decrease in amplitude affer IInd cycle is, $\Delta A_{2}=x_{2}-x_{4}=4 f / k$
and this continues, so decrease in amplitude is same after each cycle and is equal to 4f/k.
35. (A, B, C) Work done in stretching the wire $=$ potential energy stored

$$
=\frac{1}{2} \times \text { stress } \times \text { strain } \times \text { volume }=\frac{1}{2} \times \frac{\mathrm{F}}{\mathrm{~A}} \times \frac{\ell}{\mathrm{L}} \times \mathrm{AL}=\frac{1}{2} \mathrm{~F} \ell
$$

36.(A,C) The time period of simple pendulum in air

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{equation*}
\mathrm{T}=\mathrm{t}_{0}=2 \pi \sqrt{\left(\frac{\ell}{\mathrm{~g}}\right)} \tag{1}
\end{equation*}
$$

ℓ, being the length of simple pendulum.
In water, effective weight of bob

$$
\begin{aligned}
& w^{\prime}=\text { weight of bob in air - upthrust } \\
\Rightarrow \quad & \rho \vee g_{\text {eff }}=m g-m^{\prime} g=\rho V g-\rho^{\prime} V g=\left(\rho-\rho^{\prime}\right) V g
\end{aligned}
$$

where $\rho^{\text {s }}=$ density of bob,
$\rho=$ density of water
$\therefore \quad g_{\text {eff }}=\left(\frac{\rho-\rho^{\prime}}{\rho}\right) g=\left(1-\frac{\rho^{\prime}}{\rho}\right) g$
$\therefore \quad t=2 \pi \sqrt{\left[\frac{\ell}{\left(1-\rho^{\prime} / \rho\right) g}\right]}$
$\rightarrow+$

Thus,

$$
\frac{\mathrm{t}}{\mathrm{t}_{0}}=\sqrt{\left[\frac{1}{1-\rho^{\prime} / \rho}\right]}=
$$

)
$=\sqrt{\left(\frac{4}{4-3}\right)}=2 \Rightarrow t=2 t_{0} \Rightarrow t_{0}=0.5 t$

Here AD $=\ell=\delta \ell$

$$
\text { Stress }=\mathrm{T} / \mathrm{A} \text { and strain }=\left(\delta_{l / \ell}\right)
$$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Now $\mathrm{Y}=\frac{\text { Stress }}{\text { Strain }}=\frac{\mathrm{T} / \mathrm{A}}{\delta \ell / \ell}$
or $\quad T=Y A\left(\frac{\delta \ell}{\ell}\right)$
From figure, $2 \mathrm{~T} \sin \theta=\mathrm{m} \mathrm{g}$
or $T=\frac{m g}{2 \sin \theta}$
From equation (1) and equation (2), we get

$$
\begin{aligned}
& \frac{\mathrm{mg}}{2 \sin \theta}=\mathrm{YA}\left(\frac{\delta \ell}{\ell}\right) \\
& \sin \theta=\frac{\mathrm{mg}}{2 \mathrm{YA}} \times\left(\frac{\ell}{\delta \ell}\right)
\end{aligned}
$$

From $\triangle \mathrm{ACD}$,

$$
\begin{align*}
& \frac{\ell}{\ell+\delta \ell}=\cos \theta \\
& \frac{\delta \ell}{\ell}=\left(\frac{1}{\cos \theta}-1\right)=\frac{1-\cos \theta}{\cos \theta} \tag{4}
\end{align*}
$$

Substituting the value of (e/ δ) from equation (4) in equation (3), we get

$$
\sin \theta=\frac{m g}{2 Y A}\left(\frac{\cos \theta}{1-\cos \theta}\right)
$$

$$
\tan \theta(1-\cos \theta)=\frac{\mathrm{mg}}{2 \mathrm{YA}}
$$

or $\tan \theta\left(2 \sin ^{2} \frac{\theta}{2}\right)=\left(\frac{\mathrm{mg}}{2 \mathrm{YA}}\right)$
when θ is small, then

Website: www.vpmclasses.com

Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& \theta \times 2\left(\frac{\theta^{2}}{4}\right)=\left(\frac{\mathrm{mg}}{2 \mathrm{YA}}\right) \\
& \theta=\left(\frac{\mathrm{mg}}{\mathrm{YA}}\right)^{1 / 3}=\left(\frac{1 \times 9.8}{2 \times 10^{11} \times 4 \times 10^{-4}}\right)^{1 / 3}=\frac{1}{2} \times 10^{-2} \mathrm{rad}=5 \times 10^{-3} \mathrm{rad}
\end{aligned}
$$

38.(A,C,D) In amplitude resonance at resonance condition powertransferred from driving force to oscillator is maximum.
39.(A,D) (a) If the detector is at $x=0$, the two radiowaves can be represented as

$$
y_{1}=A \sin \omega_{1} t \text { and } y_{2}=A \sin \omega_{2} t
$$

(Given: $A_{1}=A_{2}=A$)

By the principle of superposition

$$
\begin{aligned}
& y=y_{1}+y_{2}=A \sin \omega_{1} t+A \sin \omega_{2} t \\
& y=2 A \cos \left(\frac{\omega_{1}-\omega_{2}}{2} t\right)<\sin \left(\frac{\omega_{1}+\omega_{2}}{2} t\right)=A_{0} \sin \left(\frac{\omega_{1}+\omega_{2}}{2} t\right)
\end{aligned}
$$

Here, $A_{0}=2 A \cos$

since, $1 \propto\left(A_{0}\right)^{2} \propto 4 A^{2} \cos ^{2}\left(\frac{\omega_{1}-\omega_{2}}{2} t\right)$
So, intensity will be maximum when

$$
\cos ^{2}\left(\frac{\omega_{1}-\omega_{2}}{2} \mathrm{t}\right)=\text { maximum }=1
$$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
or $\quad \cos ^{\left(\frac{\omega_{1}-\omega_{2}}{2} t\right)}= \pm 1$
or $\quad \frac{\omega_{1}-\omega_{2}}{2} \quad t=0, \pi, 2 \pi \ldots$
ie, $t=0, \frac{2 \pi}{\omega_{1}-\omega_{2}}, \frac{4 \pi}{\omega_{1}-\omega_{2}}, \ldots \frac{2 n \pi}{\omega_{1}-\omega_{2}} \quad n=0,1,2 .$.

Therefore, time interval between any two successive maxima is $\overline{\omega_{1}-\omega_{2}}=$ $\frac{2 \pi}{10^{3}} \mathrm{~s}$ or $6.28 \times 10^{-3} \mathrm{~s}$.

$$
=628 \times 10^{-5} \mathrm{~s}
$$

(b) The detector can detect if resultant intensity $\geq 2 \mathrm{~A}^{2}$, or the resultant amplitude $\geq \sqrt{2} \mathrm{~A}$.

Hence, 2A cos $\left(\frac{\omega_{1}-\omega_{2}}{2} t\right) \geq \sqrt{2} A$

$$
\cos \left(\frac{\omega_{1}-\omega_{2}}{2} t\right) \geq \frac{1}{\sqrt{2}}
$$

Therefore, the detector lies idle. When value of $\cos \left(\frac{\omega_{1}-\omega_{2}}{2} t\right)$ is between 0 and $\frac{1}{\sqrt{2}}$

$$
\begin{aligned}
& \text { or when } \frac{\omega_{1}-\omega_{2}}{2} \text { tis between } \frac{\pi}{2} \text { and } \frac{\pi}{4} \\
& \text { or ties between }
\end{aligned}
$$

$$
\frac{\pi}{\omega_{1}-\omega_{2}} \text { and } \frac{\pi}{2\left(\omega_{1}-\omega_{2}\right)}
$$

$$
\therefore \quad t=\frac{\pi}{\omega_{1}-\omega_{2}}-\frac{\pi}{2\left(\omega_{1}-\omega_{2}\right)}=\frac{\pi}{2\left(\omega_{1}-\omega_{2}\right)}=\frac{\pi}{2 \times 10^{3}}
$$

$$
t=1.57 \times 10^{-3} \mathrm{~s}=15.7 \times 10^{-4} \mathrm{~s}
$$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Hence, the detector lies idle for a time of $1.57 \times 10^{-3} \mathrm{~s}$ in each cycle.
40.(A,C) Velocity of sound in water is

$$
v_{w}=\sqrt{\frac{\beta}{\rho}}=\sqrt{\frac{2.088 \times 10^{9}}{10^{3}}}=1445 \mathrm{~m} / \mathrm{s}
$$

Frequency of sound in water will be

$$
\mathrm{f}_{0}=\frac{v_{\mathrm{w}}}{\lambda_{\mathrm{w}}}=\frac{1445}{14.45 \times 10^{-3}} \mathrm{~Hz}
$$

(a) Frequency of sound detected by receiver (observer) at rest would be source

(b) Velocity of sound in air is

$$
v_{a}=\sqrt{\frac{\mathrm{rRT}^{M}}{M}}=\sqrt{\frac{(1.4)(8.31)(20+273)}{288 \times 10^{-3}}}=344 . \mathrm{m} / \mathrm{s}
$$

\therefore Frequency does not depend on the medium. Therefore, frequency in air is also
$=10^{5} \mathrm{~Hz}$
\therefore Frequency of sound detected by receiver (observer) in air would be

$$
f_{2}=f_{0}\left(\frac{v_{a}-w}{v_{a}-w-v_{s}}\right)=10^{5}\left[\frac{344-5}{344-5-10}\right] \mathrm{Hz} .
$$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\mathrm{f}_{2}=1.0304 \times 10^{5} \mathrm{~Hz}=103.04 \times 10^{3} \mathrm{~Hz}
$$

SECTION-C

NUMERICAL ANSWER TYPE (NAT) (Q. 41-60)

41. 11

Hall potential is given as

$$
V_{H}=\frac{1}{n e}\left(\frac{I B}{t}\right)
$$

Here, $\quad n=8.4 \times 10^{28} / \mathrm{m}^{3}$
$\mathrm{I}=200 \mathrm{~A}$
$\mathrm{t}=1 \times 10^{-3} \mathrm{~m}$
$B=1.5 \mathrm{~Wb} / \mathrm{m}^{2}$

$$
V_{H}=\frac{200 \times 1.5}{8.4 \times 10^{28} \times 1.6 \times 10^{-19} \times 10^{-3}}
$$

So,
42.

20
$\overrightarrow{\mathrm{E}}=-\vec{\Delta} \mathrm{V}$
$\Rightarrow \overrightarrow{\mathrm{E}}=(-10 \mathrm{x}-10) \hat{\mathrm{i}}$
At $x=1 \mathrm{~m}$
$\overrightarrow{\mathrm{A}}=-20 \hat{i}$

$$
\Rightarrow \mid=20 \mathrm{Nm}^{-1}
$$

43. 4800

Website: www.vpmclasses.com

Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

If D is separation between source and screen, the fringe width is given as $\beta_{1}=\frac{d \lambda}{D}$ where $d=$ separation between virtual sources. If d and D are fixed, then $\frac{\beta_{1}}{\lambda_{1}}=\frac{\beta_{2}}{\lambda_{2}}$ In first case 20 fringes occupy 2 cm

$$
\Rightarrow \quad \beta_{1}=\frac{2.0}{20} \mathrm{~cm} \quad \beta_{1}=0.1 \mathrm{~cm}
$$

In second case 30 fringes occupy 2.4 cm

$$
\Rightarrow \quad \beta_{2}=\frac{2.4}{30} \mathrm{~cm}=0.08 \mathrm{~cm}
$$

So, by Eq.(i) we get

$$
\lambda_{2}=\lambda_{1} \frac{\beta_{2}}{\beta_{1}}=6000 \times \frac{0.08}{0.10}=4800 \AA
$$

44. 492

In case of a grating ,

So, As

$$
R P=\frac{\lambda}{d \lambda}=n N
$$

and

So,

$$
\mathrm{RP}=\frac{\lambda}{\mathrm{d} \lambda}=\frac{5893}{6}=982.17
$$

(b) As
$R P=n N$, i.e., $N=(R P / n)$

$$
N=(982.17 / 2) \simeq 492
$$

45. $\quad 30.4$

Let m and P be the initial mass and pressure of the gas inside the vessel. Therefore,

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{equation*}
P V=(m / M) R T \tag{1}
\end{equation*}
$$

where M is the molecular weight of the gas in the vessel.
After a part of the gas is released, we have

$$
(P-\Delta P) V=\frac{m^{\prime}}{M} \cdot R T
$$

where, m^{\prime} is the mass of the remaining gas in the vessel.
Hence, mass of the gas released is equal to (subtracting (2) from (1)

$$
\Delta \mathrm{m}=\mathrm{m}-\mathrm{m}^{\prime}=\frac{\Delta \mathrm{PVM}}{\mathrm{RT}}
$$

Now, under normal conditions ($\mathrm{P}_{0}=1 \mathrm{~atm}, \mathrm{~T}=273 \mathrm{~K}$), density of the gas is given to be ρ. Therefore, we find,
or,

$$
P_{0}(m / \rho)=(m / M) \cdot R T
$$

Thus,
Now here

$$
M / R T=\rho / P O
$$

and

$\rho=1.3 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\Delta P=0.78 \mathrm{~atm}
$$

Therefore,

$$
P_{0}=1 \mathrm{~atm} .
$$

$\Delta \mathrm{m}=1.3 \times 30 \times 10^{-3} \times 0.78$
$\cong 30.4 \mathrm{~g}$.
46. 2.5

$$
\begin{align*}
& \overrightarrow{\mathrm{V}} \text { cart }=4 \hat{i} \tag{i}\\
& \overrightarrow{\mathrm{~V}}_{\text {stone }+ \text { cart }}=(6 \sin 30) \hat{j}+(6 \cos 30) \hat{k} \tag{ii}
\end{align*}
$$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
=(3 \hat{j}+3 \sqrt{3} \hat{k})
$$

$V_{\text {stone }}=(i i)+(i)=4 \hat{i}+3 \hat{j}+3 \sqrt{3} \hat{k}$
Velocity of stone at higher point
$\overrightarrow{\mathrm{V}}_{\text {stoneneneght }}=4 \hat{i}+3 \hat{j}$
[At highest point vertical component (i.e. z component) is zero.
or speed of stone at highest point
$V=\sqrt{4^{2}+3^{2}}=\sqrt{16+9}=5 \mathrm{~ms}^{-1}$
By the principle of law of conservation of momentum
$\mathrm{mV}=2 \mathrm{mV}$
combined
or $\quad V_{\text {combined }}=\frac{V}{2}=\frac{5}{2}=2.5 \mathrm{~ms}^{-1}$
47. 0

We know in a satellite there is no derivational acceleration so, weight mg read by spring balance is zero
48. $\quad 16.9$

When the particle is at the greatest distance from the inclined plane, its velocity is parallel to the inclined plane.
i.e. $\quad V^{\prime}(t)=0$,
$V_{y}^{2}(t)=V_{v}^{2}(0)+2 a_{y} y^{\prime}$
or $0=[V \sin (\alpha-\beta)] 2-2 g \cos \beta y$
$y^{\prime}=\frac{V^{2} \cdot \sin ^{2}(\alpha-\beta)}{2 g \cos \beta}$
Here $V=19.6 \mathrm{mc}^{-1}, \alpha=60^{\circ}, \beta=30^{\circ}, \mathrm{g}=9.8 \mathrm{~ms}^{-2}$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
y^{\prime}=\quad \frac{(19.6)(19.6)}{2(9.8) \frac{\sqrt{3}}{2}} \frac{1}{4} m=16.9 m
$$

49. $\quad 4.33$

Given $\lambda=600 \mathrm{~nm}=6 \times 10^{-7} \mathrm{~m}$,

$$
\begin{aligned}
& \mathrm{d}=0.45 \mathrm{~mm}=0.45 \times 10^{-3} \mathrm{~m}, \\
& \mathrm{D}=1.5 \mathrm{~m} .
\end{aligned}
$$

Thickness of glass sheet, $\mathrm{t}=10.4 \mu \mathrm{~m}=10.4 \times 10^{-6} \mathrm{~m}$ Refractive index of medium, $\mu_{\mathrm{m}}=4 / 3$
and refractive index of glass sheet $\mu_{\mathrm{g}}=1.5$
Let central maximum is obtained at a distance y below point O . Then $\Delta \mathrm{x}_{1}$

$$
=\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=\frac{\mathrm{yd}}{\mathrm{D}}
$$

Path difference due to glass sheet

$$
\Delta x_{2}=\left(\frac{\mu_{g}}{\mu_{\mathrm{m}}}-1\right) \mathrm{t}
$$

Net path difference will be zero when

$$
\Delta x_{1}=\Delta x_{2}
$$

$$
\frac{y d}{D}=\left(\frac{\mu_{g}}{\mu_{m}}-1\right) t
$$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\therefore \quad y=\left(\frac{\mu_{g}}{\mu_{m}}-1\right) t \frac{D}{d}$
Substituting the values, we have

$$
\begin{aligned}
& y=\left(\frac{1.5}{4 / 3}-1\right) \frac{10.4 \times 10^{-6}(1.5)}{0.45 \times 10^{-3}} \\
& y=4.33 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

or we can say $\mathrm{y}=4.33 \mathrm{~mm}$.
50. 150
$\because 1$ rydberg $=2.2 \times 10^{-18} \mathrm{~J}=$ Rhc
 So, energy in first orbit $\mathrm{E}_{1}=-110 \mathrm{eV}$ energy of tadiation emitted when electron jumps from first excited state ($n=2$) to ground state ($n=1$)

$$
E_{21}=\frac{E_{1}}{(2)^{2}} \frac{-E_{1}}{(1)^{2}}=\frac{-3 E_{1}}{4}=82.5 \mathrm{gV} .
$$

so wavelength of photon emitted in this transition would be


```
\lambda\simeq150A
```

51. 0.176
$\because 1$ rydberg $=2.2 \times 10^{-18} \mathrm{~J}=$ Rhc

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Ionisation energy is give as a 8 rydberg $=2.2 \times 10^{-18} \times 8$
$=\frac{\frac{17.6 \times 10^{-18}}{1.6 \times 10^{-19}}}{e V}=110 \mathrm{eV}$
Let Z be atomic number of given element
So, $E_{1}=(-13.6) Z^{2}$
$-110=-13.6 Z^{2}$
$Z^{2}=8.08$
Z~3
$\because \quad$ radius $r \propto \frac{1}{Z}$

Radius of first orbit

$$
\begin{aligned}
& r_{1}=\frac{r_{H 1}}{Z}=\frac{0.529}{3} \AA ̆ \\
& r_{1}=0.176 \AA
\end{aligned}
$$

52. 75

The wavelength shift is given by

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\Delta \lambda=0.0242(1-\cos \theta)=0.0242\left(1-\cos 30^{\circ}\right)=0.0242(1-0.866)
$$

0.00324 Å

The kinetic energy of ejected electrons.

$$
\begin{aligned}
& \frac{1}{2} m v^{2}=\mathrm{h}\left(v-v^{\prime}\right)=\frac{\mathrm{hc}}{\lambda^{2}}(\Delta \lambda) \\
& v=\left(\frac{2 \mathrm{hc}}{\mathrm{~m} \lambda^{2}} \Delta \lambda\right)^{1 / 2}=2.1 \times 10^{8} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

[by substituting the values given above]
Now from conservation of momentum
$m v \cos \phi=\frac{h v}{c}-\frac{h v^{\prime}}{c} \times 0.866 \simeq \frac{h v^{\prime}}{c} \times 0.134$
$m v \sin \phi=\frac{h v^{\prime}}{c} \times 0.5$
or $\tan \phi=\frac{0.5}{0.134}$
or $\quad \phi=\tan ^{-1}(3.62)$

$$
\therefore \quad \phi \cong 75^{\circ}
$$

53. 12.33

The Coulomb barrier is the energy needed to bring the proton to the edge of the nucleus (see figure). If we define
$D=R+r=r_{0}\left(A^{1 / 3}+1\right)$, then

Website: www.vpmclasses.com

Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$E_{r}=k \frac{(Z e) e}{\Delta}$
$E_{r}=k \frac{Z^{2}}{r_{0}\left(A^{1 / 3}+1\right)}=\left(\frac{1.44 \mathrm{MeV} . \mathrm{fm}}{1.4 \mathrm{fm}}\right)\left(\frac{Z}{A^{1 / 3}+1}\right)=(1.03 \mathrm{MeV})$
${ }_{8} \mathrm{O}^{16} \mathrm{E}_{\mathrm{c}}=1.03 \mathrm{meV}\left(\frac{8}{(16)^{1 / 3}+1}\right)=2.34 \mathrm{MeV}$
For

For

$$
{ }_{41}{ }^{93} E_{c}=1.03 \mathrm{meV}\left(\frac{41}{93^{1 / 3}+1}\right)=7.64 \mathrm{MeV}
$$

and for

$$
{ }_{83} \mathrm{Bi}^{209} \mathrm{E}_{\mathrm{c}}=1.03 \mathrm{meV}\left(\frac{80}{(209)^{1 / 3}+1}\right){ }^{1}=12.33 \mathrm{MeV}
$$

54. 2.82

Mass of the NaCl molecule $=\frac{58.46}{6.02 \times 10^{23}}=9.7 \times 10^{-23} \mathrm{gm}$
Number of NaCl molecules per unit volume $=\frac{2.167}{9.7 \times 10^{-27}}=2.23 \times 10^{22}$ molecules $/ \mathrm{cm}^{3}$
Since NaCl is diatomic number of atoms per unit volume $=2 \times 2.23 \times 10^{22}$
$=4.46 \times 10^{22}$ atoms cm^{3}.
$\simeq 4.5 \times 10^{22}$ atoms $/ \mathrm{cm}^{3}$.

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Let a be the lattice constant, i.e. the distance measured along the edge of the cube between adjacent atoms in the crystal and let n be the number of atoms along the edge of a $1-\mathrm{cm}$ cube. . Then the length of an edge is na and the volume of the unit cube is $n^{3} a^{3}$. Since n^{3} is the number of atoms in $1 \mathrm{~cm}^{2}$, therefore
or

$$
n^{3} a^{3}=4.5 \times 10^{22} a^{3}=1
$$

or $\quad a=2.82 \times 10-8 \mathrm{~cm}=2.82 \AA$
55. 1.01

The above figure can be simplified

Collector cufrent $=\beta l_{\mathrm{B}}=100 \times 10 \mu \mathrm{~A}=1 \mathrm{~mA}$
Emittercurrent $I_{E}=\mathrm{I}_{\mathrm{c}}+\mathrm{I}_{\mathrm{n}}=10 \mathrm{~mA}+10 \mu \mathrm{~A}=1.01 \mathrm{~mA}$
56. 15

The above figuŕe can be simplified

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
V_{C E}=V_{C C}-I_{C} R_{L}=25-(1 \times 10) V=15 \text { Volt }
$$

57. 2.8

Suppose

$$
V=\text { max velocity of the lift and }
$$

$f=$ the acceleration as shown.

When the current is switched off retardation (negative acceleration) of the lift $=9.8$ $\mathrm{m} / \mathrm{s}^{2}$.

From the figure we find

$$
\begin{aligned}
& t_{1}=\text { time period for the acceleration } \\
& t_{2}=\text { time period for the retardation }
\end{aligned}
$$

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Then from the figure we find area $C A B$ show the distance travelled by the lift.
Area $O A B=\frac{1}{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \mathrm{V}=\frac{1}{2}(5) \mathrm{V}=2.5 \mathrm{~V}=7 \quad$ or $\quad \mathrm{V}=\frac{7}{2.5}=2.8 \mathrm{~m} / \mathrm{s}$.
58. 0.6

Suppose

$$
\mathrm{V}=\mathrm{max} \text { velocity of the lift and }
$$

$f=$ the acceleration as shown.

When the current isswitched off retardation (negative acceleration) of the lift $=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

From the figure we find
$t^{\prime}=$ time period for the acceleration
= time period for the retardation
Then from the figure we find area $C A B$ show the distance travelled by the lift.
Area $\mathrm{OAB}=\frac{1}{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \mathrm{V}=\frac{1}{2}(5) \mathrm{V}=2.5 \mathrm{~V}=7$
or $\quad V=\frac{7}{2.5}=2.8 \mathrm{~m} / \mathrm{s}$.

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Retardation $=\tan \theta_{2}=\frac{\mathrm{V}}{\mathrm{t}_{2}}=\frac{2.8}{\mathrm{t}_{2}}=9.8$
or $\quad \mathrm{t}_{2}=\frac{2.8}{9.8}=0.28$ seconds.
$\therefore \quad \mathrm{t}_{1}=5-0.28=4.47$ seconds.
Next acceleration $=\tan \theta_{1}=\frac{\mathrm{V}}{\mathrm{t}_{1}}=\frac{2.8}{4.72}=0.6 \mathrm{~m} / \mathrm{s}^{2}$.
59. 6.6

Suppose
$\mathrm{V}=$ max velocity of the lift and $f=$ the acceleration as shown

When the current is switched off retardation (negative acceleration) of the lift
$=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
From the figure we find

$$
\begin{aligned}
& t_{1}=\text { time period for the acceleration } \\
& t_{2}=\text { time period for the retardation }
\end{aligned}
$$

Then from the figure we find area CAB show the distance travelled by the lift.

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Area $\mathrm{OAB}=\frac{1}{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \mathrm{V}=\frac{1}{2}(5) \mathrm{V}=2.5 \mathrm{~V}=7$ or $\quad \mathrm{V}=\frac{7}{2.5}=2.8 \mathrm{~m} / \mathrm{s}$.
During acceleration, the lift rises to a height numerical equal to the area OCA.

$$
\text { Area OCA }=\frac{1}{2} \mathrm{t}_{1} \times \mathrm{V}=\frac{1}{2} \times 4.72 \times 2.8=6.6 \mathrm{~m}
$$

60. 3.18

Suppose
$\mathrm{V}=$ max velocity of the lift and
$f=$ the acceleration as shown.

When the current is switched off retardation (negative acceleration) of the lift $=9.8 \mathrm{~m} / \mathrm{s}^{2}$

From the figure we find
$t_{1}=$ time period for the acceleration
$\mathrm{t}_{2}=$ time period for the retardation
Then from the figure we find area CAB show the distance travelled by the lift.
Area $O A B=\frac{1}{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right) \mathrm{V}=\frac{1}{2}(5) \mathrm{V}=2.5 \mathrm{~V}=7 \quad$ or $\quad \mathrm{V}=\frac{7}{2.5}=2.8 \mathrm{~m} / \mathrm{s}$.

Website: www.vpmclasses.com
Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Retardation $=\tan \theta_{2}=\frac{\mathrm{V}}{\mathrm{t}_{2}}=\frac{2.8}{\mathrm{t}_{2}}=9.8$
$\therefore \quad \mathrm{t}_{1}=5-0.28=4.47$ seconds.
Next acceleration $=\tan \theta_{1}=\frac{\mathrm{V}}{\mathrm{t}_{1}}=\frac{2.8}{4.72}=0.6 \mathrm{~m} / \mathrm{s}^{2}$.
Accelerating force $=$ force to produce an acceleration of $0.6 \mathrm{~m} / \mathrm{s}^{2}+$ force to ever
come the weight of the lift. $=\frac{3 \times 0.6}{9.81}+3=3.18$ tonnes weight.

$$
=\frac{3 \times 0.6}{9.81}+3=3.18 \text { tonnes weight. }
$$

Website: www.vpmclasses.com

Online Store: store.vpmclasses.com

FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

